
A Langevin approach to fermion and quantum spin correlation functions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1983 J. Phys. A: Math. Gen. 16 L317

(http://iopscience.iop.org/0305-4470/16/10/001)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 16:14

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/16/10
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 16 (1983) L317-L319. Printed in Great Britain 

LETTER TO THE EDITOR 

A Langevin approach to fermion and quantum spin 
correlation functions 

John R Klauder 
Bell Laboratories, Murray Hill, NJ 07974, USA 

Received 30 March 1983 

Abstract. By using spin-coherent states, we show that correlation functions for fermions 
or quantum spins follow from solutions to Langevin equations associated with a functional 
integral representation of the partition function. Our method is applicable to any number 
of dimensions, may also be combined with boson variables, and is suitable for computer 
simulations. 

A functional integral representation for the imaginary-time dynamics or partition 
function for quantum fermions or spin systems does not readily lend itself to conven- 
tional Monte Carlo methods (e.g. a Metropolis algorithm) since the integrand is 
generally non-positive. To deal with this problem various approximate or indirect 
techniques have been used, such as the evaluation of fermion determinants by boson 
functional integrals, inversion of the Dirac operator in the presence of an external 
field, expansion in hopping parameters, etc. (see e.g. Fucito et al 1981, Scalapino and 
Sugar 1981, Weingarten and Fetcher 1981, Blankenbecler et a1 1981, Duncan and 
Furman 1981, Kuti 1981). Making use of occupation number eigenstates, Hirsch et 
a1 (1981, 1983) reduced a fermion problem to a (quasi-) local multiple sum which 
can be treated by Monte Carlo methods generally only for one space dimension. In 
this letter we address these problems by using spin-coherent states and obtain correla- 
tion functions of interest by studying a Langevin equation associated with the spin- 
coherent-state functional integral. If bosons are also present they may be treated by 
Langevin equations as well (see e.g. Klauder and Ezawa 1983). These methods are 
applicable to any number of dimensions. For the sake of illustration we confine 
ourselves to pure fermion or spin-; problems. 

For a single degree of freedom the spin-coherent states defined for all points on 
the unit sphere may be taken as (S,lO) = 410)) 

In) l8,d) =exp(-idS3) exp(-i8S2)10). (1) 
These states admit a resolution of unity in the form 

where dR = (27r)-* sin 8 de  dq5, when integrated over the unit sphere (see e.g. Klauder 
1963, 1982). Tensor products of such states cover multiple degrees of freedom, and 
fermions are represented by spin operators in the standard manner of Jordan and 
Wigner (1928). Hereafter, unless stated otherwise, we let In) and dn denote the 
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spin-coherent states and associated measures for as many degrees of freedom as are 
present. 

For a Hamiltonian 2 and E small, it follows that 

correct to order E ,  where h(R) is determined from 2 by 

%' = h (R)ln)(nl d n .  I 
For a single spin-; degree of freedom %' = a + 6  * S for some a anc 
h(R) = a + 3(5216 * SIR).: Consequently it follows that 

(4) 

6 ;  in that case 

N N 

Z = Tr(ePm) = lim * I n (n,+llRf) exp[-sh(Rf)] n dil l  ( 5 )  
E -0 f = 1  f = 1  

where N = T / E  and I&+l) E In,) (Ciafaloni and Onofri 1979, Onofri 1980). 
For E small and fixed the expression 

approximately represents the partition function with exp(S) as (complex) distribution. 
If we introduce an auxiliary time T ,  in the manner of Parisi and Wu (1981), we can 
characterise the evolution of any (complex) (non-) equilibrium distribution by a 
Fokker-Planck-like equation having exp(S) as equilibrium distribution. For a single 
degree of freedom this equation is given by 

where 8, 4 = {ef, &}. In turn, such a Fokker-Planck equation can be replaced by 
equivalent (complex) Langevin equations, which again for a single degree of freedom 
read (1SIsN)  

del (T)/dT = t cot[ef (T)]  + t as/aef (7) + ef (T), 
d4f  (7)/d7 = t{sin2[el(~)]}-' aS/a&(T) + {sin[e1(r)]}-'q1(.), 

(8) 

where & and q1 are independent standard Gaussian white noise sources, i.e. ( & ( T ) )  = 0, 
( & ( T ) &  (7')) = S; fS(T  - T ' ) ,  etc. For almost all solutions of the Langevin equations and 
for any choice of initial conditions e(O) ,  4(0) = { & ( O ) ,  4!(0)}, an analogue of the ergodic 
theorem asserts that 

f For a general spin s, h(n) is given simply by reweighting of I (c 2s) components in an expansion of 
(n1Hli-l) into spherical harmonics Y,, , , ( f l ) ;  see e .g .  Gilmore (1976). 
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Thus we are led to an approximate evaluation of the correlation function F(8, #} in 
the distribution exp(S) by means of a long-time average in the auxiliary time T of 
F{8(.r), d ( ~ ) } ,  where 8(.r), #(T) is a solution of the associated Langevin equation. 
Note in this approach that the distributions G or exp(S) and their integrals are not 
explicitly needed! 

The procedure sketched above lends itself to computer simulation where T plays 
a role quite analogous to Monte Carlo time?. In this regard we observe that although 
h is typically non-local for fermions, this non-locality is strictly algebraic and thus 
easily treated. As defined h may entail large numbers, but they may be eliminated 
by using another rule to associate X to a c-number function. For quantum spins no 
such complications arise. Numerical examples will be presented elsewhere. 
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+ Since positivity or reality of the distribution is not required by the Langevin method it can be used to 
evaluate correlation functions for distributions involving general spin-coherent matrix elements (rather 
than a trace) and/or real time, quantum mechanical systems. 


